Neural Network Drought Forcasting of Chalus River Basin with Glacial-snow Regime

نویسنده

  • MIROMID HADIANI
چکیده

Drought affects natural environment of an area when it persists for a longer period. So, drought forecasting plays an important role in the planning and management of natural resources and water resource systems of a river basin. During last decade neural networks have shown great ability in modeling and forecasting nonlinear and non-stationary time series. This paper compares linear stochastic models (ARIMA/SARIMA), recursive multi-step neural network (RMSNN,) and direct multistep neural network (DMSNN) for drought forecasting. The models were applied to forecast droughts using standardized precipitation index (SPI,) series as drought index in the Chalus River Basins, which lies in West of Mazandaran, Iran. The results obtained from three models and their potential to forecast drought over different lead times are presented in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrological Modeling of Highly Glacierized Basins (Andes, Alps, and Central Asia)

The Soil and Water Assessment Tool (SWAT) was used to simulate five glacierized river basins that are global in coverage and vary in climate. The river basins included the Narayani (Nepal), Vakhsh (Central Asia), Rhone (Switzerland), Mendoza (Central Andes, Argentina), and Central Dry Andes (Chile), with a total area of 85,000 km2. A modified SWAT snow algorithm was applied in order to consider...

متن کامل

Bivariate Drought Analysis Using Streamflow Reconstruction with Tree Ring Indices in the Sacramento Basin, California, USA

Long-term streamflow data are vital for analysis of hydrological droughts. Using an artificial neural network (ANN) model and nine tree-ring indices, this study reconstructed the annual streamflow of the Sacramento River for the period from 1560 to 1871. Using the reconstructed streamflow data, the copula method was used for bivariate drought analysis, deriving a hydrological drought return per...

متن کامل

Design of Deep Belief Networks for Short-Term Prediction of Drought Index Using Data in the Huaihe River Basin

With the global climate change, drought disasters occur frequently. Drought prediction is an important content for drought disaster management, planning and management of water resource systems of a river basin. In this study, a short-term drought prediction model based on deep belief networks DBNs is proposed to predict the time series of different time-scale standardized precipitation index S...

متن کامل

مقایسه روش رگرسیون غیرخطی با روش‌های هوش محاسباتی در برآورد توزیع مکانی آب معادل برف در سراب کارون

In mountainous basins, snow water equivalent is usually used to evaluate water resources related to snow. In this research, based on the observed data, the snow depth and its water equivalent was studied through application of non-linear regression, artificial neural network as well as optimization of network's parameters with genetic algorithm. To this end, the estimated values by artificial n...

متن کامل

Drought forecasting using new machine learning methods

In order to have effective agricultural production the impacts of drought must be mitigated. An important aspect of mitigating the impacts of drought is an effective method of forecasting future drought events. In this study, three methods of forecasting short-term drought for short lead times are explored in the Awash River Basin of Ethiopia. The Standardized Precipitation Index (SPI) was the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014